GetMesh: A Controllable Model for High-quality
Mesh Generation and Manipulation

Zhaoyang Lyu'* Ben Fei%?* Jinyi Wang® Xudong Xu!
Ya Zhang!® Weidong Yang? Bo Dait

! Shanghai Artificial Intelligence Laboratory
2 Fudan University
3 Shanghai Jiao Tong University

Abstract. Mesh is a fundamental representation of 3D assets in various
industrial applications, and is widely supported by professional softwares.
However, due to its irregular structure, mesh creation and manipulation
is often time-consuming and labor-intensive. In this paper, we propose
a highly controllable generative model, GetMesh, for mesh generation
and manipulation across different categories. By taking a varying num-
ber of points as the latent representation, and re-organizing them as
triplane representation, GetMesh generates meshes with rich and sharp
details, outperforming both single-category and multi-category counter-
parts. Moreover, it also enables fine-grained control over the generation
process that previous mesh generative models cannot achieve, where
changing global /local mesh topologies, adding/removing mesh parts, and
combining mesh parts across categories can be intuitively, efficiently, and
robustly accomplished by adjusting the number, positions or features of
latent points. Project page is https://getmesh.github.io.

Keywords: 3D Generation - Controllable Generation - Diffusion Model

1 Introduction

3D asset generation is of significant value for AR/VR, gaming, filming and de-
sign. Meshes are a kind of fundamental representation for 3D assets in industrial
applications since their creation, editing, and rendering are supported by many
professional softwares. However, mesh creation and editing can be quite time-
consuming and require extensive artistic training, since meshes are irregular in
their data structure with varying topologies across different instances and cat-
egories. Therefore, a controllable paradigm that supports intuitive and efficient
generation and manipulation of meshes is of great need.

While directly operating on meshes is difficult and sometimes infeasible, an
alternative is to rely on a suitable latent representation and associate it with
mesh via a pair of encoder and decoder. Researchers have designed many types
of latent representations for mesh generation. Among them, point-based repre-
sentations [21,43] are compact and convenient for editing, but rely on a Pois-
son reconstruction-like algorithm [29] to obtain meshes, which are overly smooth

* Equal Contribution.

2 Z. Lyu et al.

v -
& G ~
‘ % \ 4
- N
»
L.
//// \7
\\(
i

Fig. 1: Meshes generated by our method. GetMesh is able to generate diverse and
high-quality meshes across the 55 categories in ShapeNet.

without sharp details. Voxel-based representations [15,17,46,47] are proposed for
3D shapes due to their regular data structure, yet their computational and mem-
ory cost increase significantly for high-quality meshes. Finally, triplane-based
representations [8,9, 35| are compact and efficient for high-quality mesh model-
ing, but can be quite obscure and inefficient to control as they are squeezed along
a specific dimension. Therefore, despite the blooming attention and progress in
text-to-3D [3, 16, 30, 39,40] generation, finding a suitable latent representation
and subsequently an intuitive and efficient paradigm for controllable mesh gen-
eration and manipulation remains an open question.

In this paper, we propose a novel model, GetMesh, a multi-category genera-
tive model that enables both high-quality mesh generation and flexible control
over the generation process. It combines the merits of both point-based represen-
tation and triplane-based representation, which is achieved by using a varying
number of points as the latent representation, and re-organizing them as triplane
representation. The feature and position distributions of these points can be re-
spectively modeled by two diffusion models. A varying number of points as the
latent representation provides significant controllability over the generation pro-
cess, where changing global/local topologies of meshes, adding/removing mesh
parts, as well as combining mesh parts across instances/categories can all be
achieved intuitively, efficiently, and robustly by adjusting the number, positions,
or features of these points. To avoid obtaining overly smoothed meshes from
point-based representation, the proposed paradigm re-organizes these points by
projecting their features onto zy,zz,yz planes according to their positions, form-
ing a triplane-based representation. Subsequently, a triplane-based decoder with
a refinement module can thus be used to extract high-quality meshes with sharp
details.

We conduct extensive experiments on ShapeNet [2] to evaluate GetMesh. As
expected, GetMesh generates meshes with rich and sharp details as shown in Fig-
ure 1, outperforming its multi-category counterparts, and even single-category
generative models. Moreover, since GetMesh is capable of controlling mesh gen-

GetMesh: High-quality Mesh Generation and Manipulation 3

Point-based
Encoder

o Varying Number @, @ b \ |
“;’m — 1, oflatent Points g« 4g @ LSl |
e
Sample <688 e e :
+ %4, Upsampling
P

DMTet ‘ jﬁ E\ne’ J”w(

Triplane Coarse Mesh Refined Mesh

Surface Points

Fig. 2: Overview of the mesh autoencoder. Points are sampled from the surface of
the input mesh and encoded to a varying number of latent points. The latent point
representation is re-organized to the triplane representation by projecting the points
to the triplane. DMTet is utilized to extract a coarse mesh from the triplane and a
refinement module further refines the coarse mesh.

eration intuitively and flexibly, GetMesh is able to change the topology of gener-
ated meshes such as turning a twin-engine airplane into a four-engine one, and
gradually turning a car into an airplane as shown in Section 5.6. GetMesh also
successfully combines mesh parts across different categories, leading to a car
with airplane wings, and a table with lamp top. Finally, GetMesh is shown to
work well with an off-the-shelf material generative method to acquire materials
for its generated meshes.

2 Background

Denoising Diffusion Probabilistic Models (DDPMs) are generative models that
learn the distribution of samples in a dataset. A DDPM is composed of two
processes: the diffusion process and the reverse process. The diffusion process
gradually adds noise to clean samples ° and turns them into Gaussian noises
x” after T steps. It is defined as

T
q(mlv'“ 7mT|m0) = Hq(mt|mt_l)7 (1)

t=1
where g(x'|2'™1) = N(x'; /1 — gz, B 1), (2)

N is the Gaussian distribution. In our experiments, we set T" = 1000, and S;
linearly increase from 1 x 10~ to 2 x 10~2 as t increases from 1 to 7. The reverse
process is the data generation process. It starts from a Gaussian noise 7 and
denoises it step by step, eventually turning it into a clean sample 2°. The reverse
process is formally defined as

T
pe(mo,“ . ,:L’T_1|.’BT) — l_Ipe(mi&—1|mt)7
t=1

(3)
where p(z'~|z') = N (z' ' po(a', t), Bed),

B = 1;__:5;1 Bt. We follow [10] to reparameterize the mean ug(x?,t) as

4 Z. Lyu et al.

1 B
t t t
o(x',t) = (m— _eecc,t>, 4
poe', 1) = —= (a1 (4)
where o =1 — B¢, &y = | |Zt.:1 «;, and €g is a neural network with parameters
specified by 6. The loss to train the network is

L(0) = Exonpyia € — o(Varz® + V1 —ae,)|, (5)

where pqata is the distribution of the dataset, ¢ is sampled uniformly between 1
and T, and € is a Gaussian noise.

3 Methodology

A mesh is represented as vertices and faces, where faces describe the connections
between vertices. It is difficult to directly train generative models on meshes
due to their irregular data structure and discrete connections between vertices.
Therefore, we first train an autoencoder to encode a mesh to a point-based rep-
resentation that is easier to process for neural networks. Then we train DDPMs
in the latent space of the autoencoder with the same merit as [33,37], and high-
quality meshes can be reconstructed from the generated latent representation by
a decoder.

We first describe the architecture of the mesh autoencoder. Its overall ar-
chitecture is shown in Figure 2. We sample points from the input mesh and
use a point-based encoder to encode the points to a varying number of latent
points and their features. Then we re-organize the latent point representation
to a triplane representation. Finally, we use a triplane-based decoder with a re-
finement module to decode the triplane representation to a high-quality mesh.
The detailed architecture of the mesh autoencoder is explained in the following
sections.

3.1 Point-based Encoder
We sample a point cloud a € RYn*3 from the surface of the input mesh and the
encoder encodes the sampled point cloud to a set of latent points & € RY*3 with
features y € RV*P where Ny, is the number of input points, N is the number
of latent points and D is the feature dimension. To enable more versatile editing
like addition and deletion of latent points, we design an encoder that supports
a varying number of latent points @. The latent points are sampled using Fur-
thest Point Sampling (FPS) from the input point cloud @, and the number of
latent points N is uniformly sampled in the interval [Npin, Nmax] during train-
ing, where Npin, Nmax are two hyperparameters that control the minimum and
maximum number of latent points. The architecture of the encoder resembles
the one proposed in [21], which is an improved version of PointNet++ [32] pro-
posed in [20]. The encoder gradually downsamples the input point cloud and
propagates features level by level, until features are propagated to the sampled
latent points. We refer readers to the original paper [21] for details of the encoder
and Appendix Section A.1 on how we encode the input point cloud to a varying
number of latent points.

GetMesh: High-quality Mesh Generation and Manipulation 5

Coarse Mesh Subdivided Mesh Refined Mesh
Subdivide Refine
- o
- =
DMTet = —~ !
Proiection Predict offset for
Predict SDF and d each vertex in
deformation for each subdivided mesh

DMTet vertex

—_ — .
oncat

— Unet —

Fig. 3: Architecture of the refinement module.

3.2 Re-organize Latent Points as Triplane

In the previous section, we use a point-based encoder to encode the input mesh
to a set of latent points and features. While this latent point representation is
compact and intuitive to edit, it is difficult to reconstruct high-quality meshes
with sharp details and thin structures directly from point-based representation
using Poisson reconstruction or other related algorithms. In light of the recent
success of triplane representation [8,9,35] in reconstructing relative high-quality
meshes, we propose to re-organize the latent point representation as a triplane
representation. The basic idea is to project the latent points together with their
features onto the triplane. Specifically, for each point, we project it to the three
perpendicular planes according to its position. Its feature is fed to a shared MLP
and the output feature is assigned to the corresponding three pixels. Features
of latent points projected to the same pixel are aggregated by average pooling.
Pixels that do not correspond to any latent points are filled with zeros. In the
point-based encoder, we set the number of latent points small in order to make
the latent space compact. To make the triplane representation concrete, we first
upsample the latent points « to a denser point cloud «, , and propagate features
from x to x,. Then we project the upsampled point cloud «, to the triplane.
More details of the upsampling process are provided in Appendix Section A.1.

3.3 Triplane-based Decoder

After re-organizing the latent point representation as the triplane representa-
tion, we use a triplane-based decoder together with a refinement module to
reconstruct a high-quality mesh from the triplane representation. The architec-
ture of the decoder is similar to [9]. The triplane is first processed by a UNet
with 3D aware convolutions proposed in [38] and we obtain the processed tri-
plane feature f € R3*H*WxC Next, DMTet [34] is utilized to extract a mesh
differentiably. The SDF value and deformation of each vertex in the DMTet
grid are predicted by querying the triplane feature f. Specifically, for each ver-
tex v in the DMTet grid, it is projected onto the triplane and we obtain three
features f3X¥, f3”, f7* through bilinear interpolation of the feature planes. The
three features f), f3%, fo* are concatenated and fed to two MLPs to predict

v
the SDF value and deformation of the vertex v, respectively. Next, a mesh can

6 Z. Lyu et al.

be extracted from the DMTet grid using the differentiable Marching Tetrahedra
algorithm.

Refinement. We find that meshes extracted from DMTet often bear artifacts
as shown in Figure 3. The edge of the extracted mesh is not sharp, and the sur-
face is not smooth: There are evenly distributed tetrahedron-shaped dimples and
bumps on the mesh surface. More examples are provided in Figure 5. We also
observe similar artifacts in meshes generated by Get3D [8], which uses DMTet to
extract meshes as well. It is probably because of the low resolution of the DMTet
grid adopted (128?), and the underlying tetrahedral representation of the DMTet
grid. We could try to increase the resolution of the DMTet grid, but the memory
and computational cost will increase dramatically, and the topology of the tetra-
hedral grid could still affect the extracted mesh. Instead, we subdivide and refine
the coarse mesh M extracted from DMTet. The architecture of this refinement
module is shown in Figure 3. We subdivide each face in the extracted mesh by
adding new vertices at the middle point of each edge and connecting them to
form 4 smaller faces. The 3D coordinates of vertices of the new mesh M’ are
fed to a shared MLP to extract features and then projected to a triplane feature
h € R3*HXWXC WWe concatenate h with f along the channel dimension and
obtain a new triplane feature [f, h] € R3*H*Wx2C The concatenated triplane
feature [f, h| is fed to a lightweight UNet and we obtain the processed triplane
feature b’ € R3*H*WxC" We refine the subdivided mesh M’ by predicting a
displacement for each vertex in M’ using the triplane feature h’. The method is
the same as the one that uses f to predict the displacement of each vertex in the
DMTet grid. More details of the decoder and refinement module are provided in
Appendix Section A.1

Training Loss. The supervision of the autoencoder is added on the latent fea-
ture y, the upsampled points x,, and the reconstructed mesh M’. For y, we
add a Kullback-Leibler divergence loss between y and the standard Gaussian
distribution with weight 10~7 in order to make the distribution of latent fea-
tures relatively simple and smooth. For x,, we first downsample the input point
cloud a to the same number of points as «, using FPS, and then add a Chamfer
distance (CD) between the downsampled points and x,, with weight 1. For M,
we add a rendering-based loss similar to the one used in [9]. Specifically, M’ is
fed to a differentiable renderer to obtain the mask silhouette m and depth map
d, and the rendering-based loss is computed as the sum of L2 distance between
m and ground-truth mask silhouette, and L1 distance between d and ground-
truth depth map, averaged across Nyjew views. We also warm up the training of
the autoencoder by directly supervising the predicted SDF values of the DMTet
vertices. See more details in Appendix Section A.1.

3.4 Latent Diffusion Models

After training the autoencoder, we train latent diffusion models on the latent
point representation. The representation consists of latent points & € RY*3 and
features y € RV*P Note that the number of latent points N could vary between
Nin and Nyax. Similar to [21], we train two DDPMs to model the distribution

GetMesh: High-quality Mesh Generation and Manipulation 7

of & and y, respectively. The first DDPM €position is named position DDPM
and learns the distribution of x, trained with loss defined in Equation 5. The
second DDPM é€foature is named feature DDPM and learns the distribution of y
conditioned on . We use the Transformer architecture in [27] for both €position
and €feature- © and y are padded to the maximum length Ny, .x during training.
See Appendix Section A.2 for more details of the Transformer architecture and
training losses.

Sampling. To sample from the trained two DDPMs, we first use €position tO
generate positions @« of the latent points. Note that the number of latent points
can be chosen arbitrarily between Ny, and Nyax by the user during sampling.
Then we use €feature t0 generate features y conditioned on x. Finally, the gen-
erated latent points @ with features y can be reconstructed to a mesh by the
trained autoencoder.

4 Related Work

Diffusion Models. Diffusion models are likelihood-based generative models
composed of a diffusion process and a reverse process. They have been thor-
oughly explored for image generation [6,10,11,25] and speech synthesis [13,14,31].
To alleviate the slow sampling speed of diffusion models, latent diffusion mod-
els [33,37] are proposed to train diffusion models in the latent space of an autoen-
coder, which encodes data samples to a more compact representation and thus
accelerates the training and sampling speed of diffusion models. Our method is
based on latent diffusion models.

Diffusion Model for 3D Shape Generation. Diffusion models have also been
explored for 3D shape generation. They are first applied to point cloud gener-
ation [19, 21, 26,43, 49]. Some methods [21, 43] propose to reconstruct meshes
from the generated point clouds through surface reconstruction techniques [29].
Another line of works [4,9,15,17,24,35,47] utilizes implicit fields [22,28] to gener-
ate meshes. They usually design latent representations such as points, voxels, or
triplanes to represent the implicit fields, and then train diffusion models on this
latent representation. Meshes can be later reconstructed by marching cubes [18§]
or deep marching tetrahedra (DMTet [34]).

Text-to-Image Model for 3D Shape Generation. Recent works [3, 16, 30,
39,40] leverage a pre-trained text-to-image diffusion model [33] to generate 3D
assets given a text prompt. They first represent a 3D asset as a neural radiance
field (NERF [23]) or a mesh with a texture map, then render it as images and
apply Score Distillation Sampling (SDS) Loss [30] to optimize the parameters of
the 3D asset. However, these methods are quite time-consuming as they need to
optimize the parameters of a 3D asset for every single object. It is also difficult
for text to accurately control the generated shape.

8 Z. Lyu et al.

3DILG GET3D SDF-StyleGAN MeshDiffusion NFD SLIDE 3DShape2VecSet Ours

s e e e

| Ut el) Yy U
3DILG NFD SDF-StyleGAN SLIDE 3DShape2VecSet Ours
) i
fotm,) > (a e i B fatm
3DILG GET3D SDF-StyleGAN MeshDiffusion 3DShapeZV;ecSet Ours

I |~ WA Pl o (W
L e G e e

Fig. 4: Visual comparison between meshes generated by our method and baselines.
Zoom in to better see the details. More qualitative results are in Appendix Section F.

5 Experiment

5.1 Dataset

We use the ShapeNet [2] dataset to train our model and compare it with base-
lines. It contains models from 55 categories. We split the dataset into training set
(70%), validation set (10%), and test set (20%). We normalize each 3D model in
the range of [—1,1]3. To obtain gound-truth mask silhouettes and depth maps,
we render mask silhouettes and depth maps for each 3D model from 100 ran-
dom views at the resolution of 1024 x 1024. The radius is fixed at 2.6. Elevation
angle and azimuth angle is sampled uniformly from [90°, —90°] and [0°, 360°],
respectively. FOV is set to 60°.

5.2 Implementation Details

Model Architecture. For the mesh autoencoder, we set the number of latent
points to Npin = 128, Nyax = 256. For the point-based encoder, we use 3 layers
of SA modules [21]. The size of the triplane is 3 x 256 x 256 x x32. The triplane-
based decoder is composed of a UNet with 3D-aware convolutions, a DMTet
grid with resolution 1282, and a refinement module. Detailed architecture of the
mesh autoencoder is in Appendix Section A.1. For both the position DDPM and
feature DDPM, we use a Transformer architecture composed of 12 Multi-Head
Self-Attettion blocks. The embedding dimension of each attention block is 512
and the number of attention heads is 8. Detailed architecture of the position
DDPM and feature DDPM is in Appendix Section A.2.

Training. We train the mesh autoencoder on all 55 categories in ShapeNet. We
sample NV;, = 16384 points from the mesh surface as input point cloud. At each
training step, we randomly sample Nyjewy = 8 views out of the 100 views in the

GetMesh: High-quality Mesh Generation and Manipulation 9

Table 1: Compare the average generation time per mesh and Shading-FID of our
method and baselines. “-” indicates that no checkpoint is provided for that category.
To fairly compare the generation speed and quality, we use 1000 denoising steps during
inference for all DDPM-based methods, except for MeshDiffusion as it is too slow.
We use DDIM [36] (100 Steps) to accelerate MeshDiffusion. MeshDiffusion uses a 128
DMTet grid (903.20s per sample) for Car and Chair, and uses a 64> DMTet grid (91.35s
per sample) for Airplane and Table.

) Generation Shading-FID |
Method Category|Model Type Time (s) |Airplane Car Chair Table
SDF-StyleGAN [48] |[Single |GAN 1.25 70.49 105.40 46.04 45.57
GET3D |[g8] Single |GAN 0.12 - 182.07 66.48 64.06
3DILG [44] Multiple [Autoregressive 9.91 58.18 152.00 29.71 52.97
NFD [35] Single |DDPM 7.93 54.43 182.58 42.66 -
MeshDiffusion [17] |Single |DDPM 91.35, 903.20| 134.10 151.76 76.81 79.59
SLIDE |21] Single |DDPM 0.20 85.17 199.84 43.64
3DShape2VecSet [45]|Multiple [DDPM 6.56 47.86 101.38 22.92 23.90
Ours |Multiple [DDPM | 117 | 32.10 121.42 22.16 16.50

Table 2: 1-NNA comparison between our method and baselines. GetMesh achieves
the best 1-NNA compared even with single-category models, which demonstrates that
meshes generated by GetMesh best match the distribution of the dataset.

1-NNA (CD) (Percent) | |1-NNA (EMD) (Percent) |
Method Category Airplane Car Chair Table|Airplane Car Chair Table
SDF-StyleGAN [48] |Single 88.10 95.20 65.22 75.18| 91.75 94.65 70.27 75.08
GET3D 3] Single - 97.00 68.97 68.37 - 92.90 65.16 67.76
3DILG [44] Multiple | 85.20 95.25 74.27 82.43| 88.15 94.30 73.62 81.43
NFD |[35] Single 70.75 86.8 53.5 - 77.3 87.85 55.06 -
MeshDiffusion [17] |Single 73.60 89.20 67.77 57.81| 74.60 88.10 67.86 60.21
SLIDE [21] Single 80.20 91.95 59.41 - 80.25 92.55 61.01 -
3DShape2VecSet [45]|Multiple | 724 89.45 60.66 56.61| 78.25 89.4 60.91 58.66
Ours [Multiple | 69.95 84.95 52.05 52.8| 69.20 81.65 53.6 52.1

dataset to supervise the reconstructed mesh. The mesh autoencoder is trained in
three phases for 900 epochs with a batchsize of 128. Detailed training schedule
and time of the mesh autoencoder are in Appendix Section A.1. For both the
position DDPM and feature DDPM, we use the Adam optimizer to train them
for 4000 epochs with batchsize 128 and learning rate 2 x 10~%. More training
details of the position DDPM and feature DDPM are in Appendix Section A.2.

5.3 Mesh Autoencoding

The autoencoder is trained on the training set. We select the checkpoint with the
best performance on the validation set and evaluate its performance on the test
set. We compute the IOU between rendered masks of the reconstructed meshes
and ground-truth masks (averaged across the first 32 views in the dataset), and
Ly CD (Chamfer Distance) loss between 10° surface points sampled from the
reconstructed meshes and ground-truth meshes. Our mesh autoencoder achieves
0.968 IOU and 1.34 x 10~2 CD loss.

10 Z. Lyu et al.

Table 3: MMD comparison between our method and baselines. GetMesh achieves
good MMD compared even with single-category models, which demonstrates the high
generation quality of GetMesh.

MMD (CD) x1000 | MMD (EMD) x100 |
Method Category s Tane Car Chair Table|Alrplane Car Chair Table
SDF-StyleGAN [48] [Single 4.31 4.87 16.42 23.05| 1144 8.82 16.95 17.17
GET3D [g] Single - 497 1716 21.08 - 8.67 16.61 16.57
3DILG [44] Multiple | 4.49 5.18 18.56 30.13| 9.33 8.80 17.34 19.39
NFD [35] Single 308 417 14.44 - | 838 8151500 -
MeshDiffusion [17] |Single 3.02 479 17.11 18.68| 8.10 8.88 17.17 15.82
SLIDE [21] Single 360 443 1503 - | 864 838 1588 -
3DShape2VecSet [45]|Multiple | 3.16 4.20 15.51 18.69| 8.79 8.41 16.20 15.88
Ours [Multiple | 3.38 4.01 14.55 17.86] 8.31 8.00 15.72 15.34

Table 4: Coverage comparison between our method and baselines. GetMesh achieves
high Coverage compared even with single-category models, which demonstrates the
high generation diversity of GetMesh.

Coverage (CD) (Percent) 1|Coverage (EMD) (Percent) 1

Method Category Airplane Car Chair Table|Airplane Car Chair Table
SDF-StyleGAN [48] |Single 32,5 20.0 43.24 38.13| 21.7 19.8 38.43 35.83
GET3D [8] Single - 20.5 45.95 44.04 - 23.4 47.75 45.95
3DILG [44] Multiple | 35.5 13.6 36.54 24.22| 28.3 13.4 37.84 27.23
NFD |[35] Single 46.4 29.5 46.75 - 36.8 27.0 46.65 -

MeshDiffusion [17] |Single 48.0 252 40.14 49.05| 43.8 28.3 42.54 45.25
SLIDE [21] Single 40.8 26.3 46.75 - 38.1 23.7 46.65 -

3DShape2VecSet [45]|Multiple | 47.0 28.4 50.45 49.95| 43.1 27.6 49.35 50.25
Ours [Multiple | 46.1 29.0 49.35 51.45| 50.5 30.4 50.35 51.15

5.4 Mesh Generation

We train the position DDPM and the feature DDPM in the latent space of
the pre-trained autoencoder in the previous section. We train class-conditional
DDPMs on the 55 categories. Each class is associated with a learnable token
and the token is appended to the sequence of positions and features of the
latent points during training. We randomly drop the class label to null with
20% probability during training to enable classifier-free [12] guidance in the
sampling phase, and novel shape generation and editing beyond the 55 categories
in ShapeNet.

We compare our method with both multi-category generative models [44,45]
and single-category generative models [8,17,21,35,48]. We use Shading FID [48],
1-NNA [42], Minimum Matching Distance (MMD [1]) and Coverage [1] to evalu-
ate our method and baselines. More evaluation details are in Appendix Section C.
Results are shown in Table 1, Table 2, Table 3 and Table 4, respectively. We can
see that our model achieves the best 1-NNA in all cases and the best Shading-FID
in most cases even compared with single-category models. Both metrics measure
the distance between the distribution of the generated meshes and meshes in the
reference dataset. Therefore, the experiments demonstrate that GetMesh better
learns the distribution of meshes in the dataset compared with baselines. MMD
and Coverage explicitly measure the quality and diversity of generated meshes,

GetMesh: High-quality Mesh Generation and Manipulation 11

Fig. 5: Compare meshes reconstructed by autoencoders with and without the refine-
ment module. For each pair of meshes, the left one is without the refinement module,
and the right one is with the module. Zoom in to see more details.

Table 5: Ablation study of the number of latent points in the latent space. Shading
FID is reported.

Nmin Nmax‘Airplane Car Chair Table

32 64 | 206.57 261.49 224.71 228.43
128 256 | 32.10 121.42 24.59 16.50
512 1024| 44.32 113.22 63.25 36.03
2048 4096 | 237.36 163.16 162.83 117.55

respectively. We can see that GetMesh achieves highly competitive MMD and
Coverage even compared with single-category models, which demonstrates the
superior generation quality and diversity of GetMesh.

Besides quantitative comparisons, we also qualitatively compare meshes gen-
erated by GetMesh and baselines in Figure 4. We can see that our method
generates meshes with sharper edges and smoother surfaces. Our method also
generates thin structures such as airplane wings and tails quite well.
Generation speed. We compare the average generation time per sample of
our method and baselines tested on a single NVIDIA A100 GPU in Table 1. We
can see that GetMesh is much faster than other DDPM-based method. That is
because we train diffusion models on a much more compact point-based repre-
sentation, which contains 128 ~ 256 points. Note that triplanes are only used in
our autoencoder to reconstruct high-quality meshes, not used to train diffusion
models. On the other hand, MeshDiffusion trains diffusion models on the DM Tet
grid, which contains 277410 vertices for a 128> resolution grid. NFD trains diffu-
sion models on triplanes of resolution 128, which contains 128 x 128 x 3 = 49152
pixels. 3DShape2VecSet trains diffusion models on a set of 512 vectors. This ex-
plains why GetMesh is much faster than these DDPM-based methods. Although
SLIDE [21] is faster than our method by using fewer points (16 points), GetMesh
enables much more accurate control over the generated shapes than SLIDE by
using relatively more points as shown in Figure 6. In addition, GetMesh gen-
erates much higher quality meshes than SLIDE by using a triplane-based mesh
decoder compared to SLIDE’s Poisson-based surface reconstruction method [29].
The generation speed of GetMesh is also competitive compared with other non-
DDPM-based methods.

5.5 Ablation Study

We conduct an ablation study on the number of latent points in the latent
space. The performance of the mesh autoencoders with different numbers of

12 Z. Lyu et al.

SUDE: o ,
Move
Engines

NERES

5 5:
Ours: Ours:
Move Add/Delete 3
/

I""{i’)w
g&.«

Engines Engines
/\é\ «2\ >\ A\

Fig. 6: Compare our method with SLIDE in terms of controllable generation. Our
method can perform more delicate control on the generated shape and enables adding
or deleting shape parts.

Original Mesh Original Latent Points Human Edited Generated Latent Points by Edited Mesh
Latent Points Position DDPM with Guidance

Fig. 7: Human-edited latent points could have holes, missing parts, or other flaws. We
develop a guidance method for the position DDPM to generate latent points that are
consistent with the edited latent points, but mitigate flaws in the edited latent points.
This guidance method makes mesh manipulation through latent point positions more
robust and convenient.

latent points is shown in Appendix Section D. The mesh autoencoder with
N € [512,1024] achieves the best reconstruction performance. Next, we train
latent diffusion models in the latent space of these autoencoders. We report
the generation performance of the latent diffusion models in Table 5 and more
results are in Appendix Section D. We can see that the diffusion model with
N € [128,256] achieves the best generation performance in most cases, and the
diffusion model with N € [512,1024] achieves relatively good generation perfor-
mance as well. On the other hand, the performance of the diffusion models with
too many (N € [2048,4096]) or too few (N € [32,64]) latent points is signifi-
cantly worse than the other two diffusion models. We need a moderate number of
latent points (128 ~ 1024) to train latent diffusion models with good generation
performance.

Next, we ablate our refinement module in the mesh autoencoder. Without
the refinement module, the reconstruction performance of the mesh autoencoder
(N € [128,256]) drops from 0.968 IOU and 1.34 x 1072 CD loss to 0.961 IOU and
1.46 x 1072 CD loss. Figure 5 also provides a qualitative comparison between
meshes reconstructed with and without the refinement module. We can see that
the refinement module greatly mitigates the artifacts in the coarse meshes ex-
tracted from DMTet. It makes the mesh surface smoother and the edges sharper.

GetMesh: High-quality Mesh Generation and Manipulation

A\X\X\&Ww$w

Source Airplane Source Car Combined Shapes Source Lamp Source Table Combined Shapes

Fig. 8: We can combine different shapes to form novel shapes by combining their
latent points. Our models can properly handle the joints of different parts and output
watertight meshes.

R 7 TR R 4 _ 4
& e 11V = =%

5“-\-\.,&_- T

Fig. 9: Shape interpolation. Fig. 10: Turning a car into an airplane.

5.6 Controllable Mesh Generation

Our method enables highly controllable 3D shape generation and flexible mesh
manipulation by adjusting the number, positions, or features of the latent points.
We demonstrate the controllable generation ability of the model with N €
[512,1024] in this section, and more examples of the model with N € [128, 256]
are shown in Appendix Section E.

Controllable mesh generation. We can use the positions of the latent points
to control the shape of generated meshes. We compare our method with SLIDE [21],
which also supports latent point-based shape manipulation. Our models have
more latent points than SLIDE (16 points), therefore, we can perform more del-
icate controls over the generated mesh. As shown in Figure 6, we can control
the positions of the engines of the generated airplane while SLIDE struggles to
control. In addition, our models support varying numbers of latent points, and
thus we can delete or add a part of a shape. Figure 6 shows that we can delete
or add engines to the airplane, which SLIDE can not achieve since it uses a fixed
number of latent points.

We also develop a guided-sampling method for the position DDPM to facili-
tate controllable mesh generation and manipulation. Human-edited latent points
may have flaws in many cases. Therefore, we need to develop a method that re-
flects the editing effect of a user’s intention, while mitigating the pitfalls of human
editing. The main idea of our method is to leverage the position DDPM’s ability
to generate an arbitrary number of latent points and use the edited latent points
to guide the sampling process of the position DDPM. The guidance method is
inspired by the one proposed in [7] and is explained in Appendix Section B.
In Figure 7, we demonstrate that our guidance method can make the position
DDPM generate latent points that are consistent with the edited latent points
but mitigate their flaws, and thus facilitate the process of shape manipulation.
Shape combination. Since our models support varying numbers of latent
points, we can directly combine different shapes together to form novel shapes.
We can combine the latent points and regenerate features using the feature

14 Z. Lyu et al.

A car with oil paintings of Van
Gogh painted on its body.

A cartoon airplane.

Fig. 12: We use MATLABER [41] to generate materials for meshes generated by our
method. More examples are in Appendix Section F. Note that texture or material
generation is NOT the focus or contribution of this work. We merely intend to show
that our method can be seamlessly combined with off-the-shelf methods to obtain
meshes with textures or materials.

DDPM or simply remaining the original features, and then use the mesh au-
toencoder to decode the combined latent points to a mesh. Figure 8 shows that
our models can properly handle the joints of different parts.

Shape interpolation. Shape interpolation is straightforward using latent points
and their features. For two shapes represented by latent points x1,xs € RV*3
and latent features y;, y> € R¥*P we find the optimal bijection ¢* : &1 — x».

Q" = arg;nin Talley — d(@)|l2, (6)

where z} is the i-th point in x;. Based on this bijection ¢*, we can interpolate
the corresponding points and their features between x; and x5. Figure 9 gives
an example of shape interpolation.

Shape animation. Traditional mesh animation methods drive 3D meshes by
deforming the mesh. The vertices of the mesh are deformed while the topol-
ogy of the mesh is fixed, namely, the connections of the vertices are fixed. This
could prevent them from performing some complex shape animations that re-
quire topology changes. On the other hand, our method can generate meshes
of arbitrary topology given the latent points. Therefore, we can use the latent
points to drive the mesh. Specifically, we can use a sequence of latent point
positions to create an animation involving complex shape transformations. Fig-
ure 11 and Figure 10 are two examples. The complete video can be found in the
supplementary material. We think that our method provides a complementary
approach to existing mesh animation methods and enables more creative and
complex animations of 3D meshes.

Textured mesh generation. It is possible to paint our generated meshes with
some off-the-shelf methods. We use MATLABER [41] to colorize our generated
meshes, which can generate materials for meshes by leveraging a powerful text-
to-image diffusion model. Some examples are shown in Figure 12, and more
examples are in Appendix Section F.

GetMesh: High-quality Mesh Generation and Manipulation 15

6 Limitations

While GetMesh has made significant progress in 3D generation quality and
controllability, it still has some limitations. Firstly, training GetMesh requires
ground-truth 3D data, which is quite expensive to acquire compared with 2D
images. In light of recent works [3, 16,30, 39,40] that generate 3D assets using
2D Text-to-Image diffusion models trained on large-scale image datasets, it is
possible to combine the 3D priors in GetMesh with 2D priors in Text-to-Image
diffusion models to achieve more diverse and high-quality 3D generation. In ad-
dition, GetMesh is only validated on the ShapeNet [2] dataset due to limited
computational resources. We plan to further verify the scalability of GetMesh
on larger-scale datasets such as Objaverse [5] in the future.

7 Conclusion

In this paper, we propose GetMesh, a multi-category generative model that en-
ables both high-quality mesh generation and flexible control over the gener-
ated shape. It combines the advantages of both point-based representation and
triplane-based representation. The triplane-based representation associated with
a decoder and a refinement module enables us to reconstruct high-quality meshes
from the latent representation. By adjusting the number, positions or features
of the latent points, we can intuitively and robustly change global/local topolo-
gies of meshes, add/remove mesh parts, as well as combine mesh parts across
different instances/categories.

References

1. Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.: Learning representations
and generative models for 3d point clouds. In: International conference on machine
learning. pp. 40—49. PMLR (2018) 10

2. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z.,
Savarese, S., Savva, M., Song, S., Su, H., et al.: Shapenet: An information-rich
3d model repository. arXiv preprint arXiv:1512.03012 (2015) 2, 8, 15

3. Chen, R., Chen, Y., Jiao, N., Jia, K.: Fantasia3d: Disentangling geometry and
appearance for high-quality text-to-3d content creation. ArXiv abs/2303.13873
(2023), https://api.semanticscholar.org/CorpusID: 257757213 2, 7, 15

4. Chou, G., Bahat, Y., Heide, F.: Diffusionsdf: Conditional generative modeling
of signed distance functions. ArXiv abs/2211.13757 (2022), https://api.
semanticscholar.org/CorpusID:254017862 7

5. Deitke, M., Schwenk, D., Salvador, J., Weihs, L., Michel, O., VanderBilt, E.,
Schmidt, L., Ehsani, K., Kembhavi, A., Farhadi, A.: Objaverse: A universe of
annotated 3d objects. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 13142-13153 (2023) 15

6. Dhariwal, P., Nichol, A.: Diffusion models beat gans on image synthesis.
ArXiv abs/2105.05233 (2021), https://api.semanticscholar.org/CorpusID:
234357997 7

16

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Z. Lyu et al.

Fei, B., Lyu, Z., Pan, L., Zhang, J., Yang, W., Luo, T., Zhang, B., Dai, B.: Genera-
tive diffusion prior for unified image restoration and enhancement. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
9935-9946 (2023) 13

Gao, J., Shen, T., Wang, Z., Chen, W., Yin, K., Li, D., Litany, O., Gojcic, Z.,
Fidler, S.: Get3d: A generative model of high quality 3d textured shapes learned
from images. ArXiv abs/2209.11163 (2022), https://api.semanticscholar.
org/CorpusID:252438648 2, 5, 6, 9, 10

Gupta, A., Xiong, W., Nie, Y., Jones, 1., Oguz, B.: 3dgen: Triplane latent diffusion
for textured mesh generation. arXiv preprint arXiv:2303.05371 (2023) 2, 5, 6, 7
Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Advances in
neural information processing systems 33, 6840-6851 (2020) 3, 7

Ho, J., Saharia, C., Chan, W., Fleet, D.J., Norouzi, M., Salimans, T.: Cascaded
diffusion models for high fidelity image generation. J. Mach. Learn. Res. 23, 47:1—
47:33 (2021), https://api.semanticscholar.org/CorpusID: 235619773 7

Ho, J., Salimans, T.: Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598 (2022) 10

Jeong, M., Kim, H., Cheon, S.J., Choi, B.J., Kim, N.S.: Diff-tts: A denois-
ing diffusion model for text-to-speech. In: Interspeech (2021), https://api.
semanticscholar.org/CorpusID:233025015 7

Kong, Z., Ping, W., Huang, J., Zhao, K., Catanzaro, B.: Diffwave: A versatile
diffusion model for audio synthesis. ArXiv abs/2009.09761 (2020), https://
api.semanticscholar.org/CorpusID:221818900 7

Li, M., Duan, Y., Zhou, J., Lu, J.: Diffusion-sdf: Text-to-shape via voxelized dif-
fusion. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) pp. 12642-12651 (2022), https://api.semanticscholar.org/CorpusID:
254366593 2, 7

Lin, C.H., Gao, J., Tang, L., Takikawa, T., Zeng, X., Huang, X., Kreis, K., Fidler,
S., Liu, M.Y., Lin, T.Y.: Magic3d: High-resolution text-to-3d content creation. 2023
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) pp.
300-309 (2022), https://api.semanticscholar.org/CorpusID: 253708074 2, 7,
15

Liu, Z., Feng, Y., Black, M.J., Nowrouzezahrai, D., Paull, L., yu Liu, W.: Meshdif-
fusion: Score-based generative 3d mesh modeling. ArXiv abs/2303.08133 (2023),
https://api.semanticscholar.org/CorpusID:257505014 2, 7, 9, 10

Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface con-
struction algorithm. Proceedings of the 14th annual conference on Computer
graphics and interactive techniques (1987), https://api.semanticscholar.org/
CorpusID:15545924 7

Luo, S., Hu, W.: Diffusion probabilistic models for 3d point cloud generation. 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) pp.
2836—2844 (2021), https://api.semanticscholar.org/CorpusID:232092778 7
Lyu, Z., Kong, Z., Xu, X., Pan, L., Lin, D.: A conditional point diffusion-refinement
paradigm for 3d point cloud completion. arXiv preprint arXiv:2112.03530 (2021)
4

Lyu, Z., Wang, J., An, Y., Zhang, Y., Lin, D., Dai, B.: Controllable mesh generation
through sparse latent point diffusion models. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 271-280 (2023) 1,
4,6,7,8,9, 10, 11, 13

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

GetMesh: High-quality Mesh Generation and Manipulation 17

Mescheder, L.M., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy
networks: Learning 3d reconstruction in function space. 2019 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR) pp. 4455-4465 (2018),
https://api.semanticscholar.org/CorpusID:54465161 7

Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: Representing scenes as neural radiance fields for view synthesis. Commun.
ACM 65(1), 99-106 (dec 2021). https://doi.org/10.1145/3503250, https://
doi.org/10.1145/3503250 7

Nam, G., Khlifi, M., Rodriguez, A., Tono, A., Zhou, L., Guerrero, P.:
3d-ldm: Neural implicit 3d shape generation with latent diffusion models.
ArXiv abs/2212.00842 (2022), https://api.semanticscholar.org/CorpusID:
254220714 7

Nichol, A., Dhariwal, P.: Improved denoising diffusion probabilistic models.
ArXiv abs/2102.09672 (2021), https://api.semanticscholar.org/CorpusID:
231979499 7

Nichol, A., Jun, H., Dhariwal, P., Mishkin, P., Chen, M.: Point-e: A system for
generating 3d point clouds from complex prompts. ArXiv abs/2212.08751 (2022),
https://api.semanticscholar.org/CorpusID:254854214 7

Pang, Y., Wang, W., Tay, F.E., Liu, W., Tian, Y., Yuan, L.: Masked autoencoders
for point cloud self-supervised learning. In: European conference on computer vi-
sion. pp. 604-621. Springer (2022) 7, 3

Park, J.J., Florence, P.R., Straub, J., Newcombe, R.A., Lovegrove, S.: Deepsdf:
Learning continuous signed distance functions for shape representation. 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
pp. 165-174 (2019), https://api.semanticscholar.org/CorpusID:58007025 7
Peng, S., Jiang, C.M., Liao, Y., Niemeyer, M., Pollefeys, M., Geiger, A.: Shape as
points: A differentiable poisson solver. In: Neural Information Processing Systems
(2021), https://api.semanticscholar.org/CorpusID:235358422 1, 7, 11

Poole, B., Jain, A., Barron, J.T., Mildenhall, B.: Dreamfusion: Text-to-3d using 2d
diffusion. ArXiv abs/2209.14988 (2022), https://api.semanticscholar.org/
CorpusID:252596091 2, 7, 15

Popov, V., Vovk, 1., Gogoryan, V., Sadekova, T., Kudinov, M.A.: Grad-tts: A dif-
fusion probabilistic model for text-to-speech. In: International Conference on Ma-
chine Learning (2021), https://api.semanticscholar.org/CorpusID:234483016
7

Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet-++: Deep hierarchical feature learn-
ing on point sets in a metric space. Advances in neural information processing
systems 30 (2017) 4

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 10684-10695 (2022)
4,7

Shen, T., Gao, J., Yin, K., Liu, M.Y., Fidler, S.: Deep marching tetrahedra: a
hybrid representation for high-resolution 3d shape synthesis. Advances in Neural
Information Processing Systems 34, 6087-6101 (2021) 5, 7

Shue, J., Chan, E., Po, R., Ankner, Z., Wu, J., Wetzstein, G.: 3d neural field
generation using triplane diffusion. 2023 IEEE/CVT Conference on Computer Vi-
sion and Pattern Recognition (CVPR) pp. 20875-20886 (2022), https://api.
semanticscholar.org/CorpusID:254095843 2, 5, 7, 9, 10

Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502 (2020) 9

18

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Z. Lyu et al.

Vahdat, A., Kreis, K., Kautz, J.: Score-based generative modeling in latent space.
Advances in Neural Information Processing Systems 34, 11287-11302 (2021) 4, 7
Wang, T., Zhang, B., Zhang, T., Gu, S., Bao, J., Baltrusaitis, T., Shen, J., Chen,
D., Wen, F., Chen, Q., et al.: Rodin: A generative model for sculpting 3d digital
avatars using diffusion. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 4563-4573 (2023) 5

Wang, Z., Lu, C., Wang, Y., Bao, F., Li, C., Su, H., Zhu, J.: Prolificdreamer:
High-fidelity and diverse text-to-3d generation with variational score distillation.
ArXiv abs/2305.16213 (2023), https://api.semanticscholar.org/CorpusID:
258887357 2, 7, 15

Xu, J., Wang, X., Cheng, W., Cao, Y.P., Shan, Y., Qie, X., Gao, S.: Dream3d:
Zero-shot text-to-3d synthesis using 3d shape prior and text-to-image diffusion
models. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) pp. 20908-20918 (2022), https://api.semanticscholar.org/CorpusID:
255340806 2, 7, 15

Xu, X., Lyu, Z., Pan, X., Dai, B.: Matlaber: Material-aware text-to-3d via latent
brdf auto-encoder. arXiv preprint arXiv:2308.09278 (2023) 14, 11

Yang, G., Huang, X., Hao, Z., Liu, M.Y., Belongie, S.J., Hariharan, B.: Pointflow:
3d point cloud generation with continuous normalizing flows. 2019 IEEE/CVF
International Conference on Computer Vision (ICCV) pp. 4540-4549 (2019),
https://api.semanticscholar.org/CorpusID:195750453 10, 6

Zeng, X., Vahdat, A., Williams, F., Gojcic, Z., Litany, O., Fidler, S., Kreis, K.: Lion:
Latent point diffusion models for 3d shape generation. ArXiv abs/2210.06978
(2022), https://api.semanticscholar.org/CorpusID:252872881 1, 7

Zhang, B., Niefiner, M., Wonka, P.: 3dilg: Irregular latent grids for 3d generative
modeling. ArXiv abs/2205.13914 (2022), https://api.semanticscholar.org/
CorpusID:249152155 9, 10

Zhang, B., Tang, J., Niessner, M., Wonka, P.: 3dshape2vecset: A 3d shape
representation for neural fields and generative diffusion models. arXiv preprint
arXiv:2301.11445 (2023) 9, 10

Zheng, X., Liu, Y., Wang, P.S., Tong, X.: Sdf-stylegan: Implicit sdf-based stylegan
for 3d shape generation. Computer Graphics Forum 41 (2022), https://api.
semanticscholar.org/CorpusID:250048592 2

Zheng, X., Pan, H., Wang, P.S., Tong, X., Liu, Y., yeung Shum, H.: Locally at-
tentional sdf diffusion for controllable 3d shape generation. ACM Transactions
on Graphics (TOG) 42, 1 — 13 (2023), https://api.semanticscholar.org/
CorpusID:258557967 2, 7

Zheng, X., Liu, Y., Wang, P., Tong, X.: Sdf-stylegan: Implicit sdf-based stylegan
for 3d shape generation. In: Computer Graphics Forum. vol. 41, pp. 52-63. Wiley
Online Library (2022) 9, 10, 5

Zhou, L., Du, Y., Wu, J.: 3d shape generation and completion through point-voxel
diffusion. 2021 IEEE/CVF International Conference on Computer Vision (ICCV)
pp. 5806—5815 (2021), https://api.semanticscholar.org/CorpusID:233182041
7

GetMesh: High-quality Mesh Generation and Manipulation 1

A Network Architectures and Training Details

In this section, we explain the detailed architecture and training procedure of
our mesh autoencoder, position DDPM, and feature DDPM. We will release the
code to facilitate reproducibility if the paper is accepted.

3 X 256 X 256 x 128 3 X 256 X 256 X 32 SDF MLP — SDF values of
DMTet vertices

3 layers
Hidden dimension: 128
Out dimension: 1

Deformation i
2 ResBlocks downsample the ~ MLP — B,?Af-lqu\?gs;:;
triplane to 3 x 256 x 256 x 32
Unet input Channel: 32 3 layers
Channel multipliers: 1,1, 2,2, 4, 4 Hidden dimension:128
Attention resolutions: 32,16,8 Out dimension: 3

Fig. 13: Detailed architecture of the triplane-based decoder.

A.1 Mesh Autoencoder

The mesh autoencoder is composed of the point-based encoder, the triplane-
based decoder, and the refinement module. The point-based encoder is similar
to the one proposed in [21]. It gradually downsamples the input point cloud and
propagates features level by level. The detailed architecture of the point-based
encoder is shown in Table 7. Recall that we need to re-organize the latent point
representation to the triplane representation. We first upsample the latent points
and then project them to the triplane. The details of the upsampling process
are shown in Table 7. The detailed architecture of the triplane-based decoder is
shown in Figure 13, and the detailed architecture of the refinement module is
shown in Figure 14.

To handle varying numbers of latent points N € [Npin, Nmax] in the mesh
autoencoder, we pad the latent points to Nyax points with dummy points at 3D
coordinate (4,4,4), which are far away from the object bounding box [—1,1]3,
such that the dummy points will not affect features propagated to the real latent
points. The upsampling process is based on the one proposed in [21]. In the
upsampling process, each real latent point is split into v new points by using
its feature to predict v offsets through a shared MLP. The resulting points that
range from v Npin t0 YNmax points are downsampled to a fixed number of points
by furthest point sampling. We use v = 16 in all experiments.

Training details. The supervision of the autoencoder is added on the latent fea-
ture y, the upsampled points @, the reconstructed mesh M’, and the predicted

2 Z. Lyu et al.
Coarse Mesh Subdivided Mesh Refined Mesh

Subdivide Refine

E(\ 3 X 256 x 256 x 32 E’<\{ Predict offset for'j\/
DMTet each vertex in ¥
Predict SDF and ProJect|on subdivided mesh
deformation for each Deformation
DMTet vertex 8 layers MLP —‘
| Hidden dimension:128
\l‘ Out dimension: 3 e
= — Unet —
Concat
3 ResBlocks
3 X 256 x 256 x 32 3 X 256 X 256 X 64 3 X 256 X 256 X 32

Fig. 14: Detailed architecture of the refinement module.

Table 6: The schedule of Lspr and LRender t0 train the mesh autoencoder.

Epoch |300 320 325 330 335 340 345 350 355 360 365 600

Lspr 1 09 08 07 06 05 04030201 0 0
LRender| 0 0.001 0.002 0.005 0.01 0.020.050.1 0.2 0.5 1 1

SDF values of the DMTet grid. For y, we add a Kullback-Leibler divergence
loss, Lkr,, between y and the standard Gaussian distribution in order to make
the distribution of latent features relatively simple and smooth. For x,, we first
downsample the input point cloud a to the same number of points as x, using
FPS, and then add a Chamfer distance (CD), L¢p, between the downsampled
points and x,. For M’, we add a rendering-based loss, Lrender, Similar to the
one used in [9]. Specifically, M’ is fed to a differentiable renderer to obtain the
mask silhouette m and depth map d, and the rendering-based loss is computed
as the sum of L2 distance between m and ground-truth mask silhouette, and L1
distance between d and ground-truth depth map, averaged across Nyjew views.
For the predicted SDF values of the DMTet grid, we add an MSE loss, Lspr,
between the predicted SDF values and ground-truth SDF values of the DMTet
grid.

The autoencoder is trained in three phases. In all phases, we use a weight of
1077 for Ly, and use a batchsize of 128. In the first phase, we use a weight of 1
for Lop, and the other loss terms are not included. The triplane-based decoder
is not trained in this phase. We use the Adam optimizer with a learning rate of
102 and train the mesh autoencoder for 300 epochs. The checkpoint with the
lowest Lgp is selected to train the mesh autoencoder in the second phase.

GetMesh: High-quality Mesh Generation and Manipulation 3

Algorithm 1: Guided sampling for position DDPM.

Input: Trained position DDPM e€position- Edited latent point positions
x. € RVeX3 Guidance scale s.
Output: Sampled latent points «°.
Sample & from N (27;0,I)
for t from T to 1 do
@t VI=8ieposition(x’,t)
&y Vatr
L= ||2°[0: Ne,:] — xc|?
20 &% sVgL
V1Pt 2o L VEIUGe)

Bt = "5, I—a

2’ =

§

Bt = 1;:;1 Bt

Sample '~ from N (z'~'; fie, B T)
end
return

0

In the second phase, L¢p is kept with weight 1. We add a warm-up schedule
for Lrender and Lspr to ensure that DMTet can extract meaningful meshes at
the initial phase. The detailed schedule is shown in Table 6. In the second phase,
we do not use the refinement module and Lgenger is applied to the coarse mesh
extracted from DMTet. We use the Adam optimizer with a learning rate of 10~3
and train the mesh autoencoder for 300 epochs. The checkpoint with the lowest
LRender 18 selected to train the mesh autoencoder in the third phase.

In the third phase, we use Lcop with weight 1 and Lrepder with weight 1.
The refinement module is included and Lgenqer is applied to the refined mesh.
We use the Adam optimizer with a learning rate of 5 x 10~ and train the mesh
autoencoder for 300 epochs. The checkpoint with the lowest Lrender is selected
to train the latent diffusion models. It takes about a week to train the mesh
autoencoder on 32 NVIDIA A100 GPUs in the three phases.

A.2 Latent Diffusion Models

For the position DDPMs and feature DDPMs in Section 3.4, we use the Trans-
former architecture proposed for points in [27]. They all share the same architec-
ture: The Transformer is composed of 12 Multi-Head Self-Attettion blocks. The
embedding dimension of each attention block is 512 and the number of attention
heads is 8. The class label is mapped to a learnable 512-dimension embedding
and appended to the input sequence.

For the position DDPM, the 3D coordinates of the latent points are mapped
to 512-dimension embeddings through a shared MLP, and the 512-dimension
embeddings are treated as both inputs and positional embeddings to the Trans-
former. The Transformer outputs are fed to a shared MLP to predict the noises
added to the latent point 3D coordinates. For the feature DDPM, both 3D co-
ordinates and features of the latent points are fed to the Transformer. The 3D
coordinates are mapped to 512-dimension embeddings through a shared MLP

4 Z. Lyu et al.

Pyrender
(Original)

Pyrender
MeshLab (50000 Faces)
Fig. 15: We use Open3D’s simplify-quadric-decimation to reduce the number of faces
in an object to 50000 in order to alleviate the artifacts from Pyrender.

and are treated as positional embeddings. The features are mapped to 512-
dimension embeddings through another shared MLP and are treated as inputs
to the Transformer. The Transformer outputs are fed to a shared MLP to predict
the noises added to the features of the latent points.

Traing details. The position and feature DDPMs are trained for 4000 epochs
with batchsize 128 and learning rate 2 x 10~4. The Adam optimizer is used. The
amount of computational resources and time to train them is shown in Table 9.

B Guided Sampling of Position DDPM

We develop a guided-sampling method for the position DDPM to facilitate con-
trollable mesh generation and editing. Human-edited latent points may have
flaws in many cases. Therefore, we need to develop a method that reflects the
editing effect of a user’s intention, while mitigating the pitfalls of human edit-
ing. The main idea of our method is to leverage the position DDPM’s ability to
generate an arbitrary number of latent points and add guidance to the sampling
process of the position DDPM.

Assume human-edited latent point is 2, € RVe*3. We aim to generate latent
points 2% € RY*3 that reflects changes in .., while avoids flaws in 2. We assume
N, < N. This can always be attained by setting N = Ny« and reducing the
number of points in x. using FPS. Next, we use . to guide the sampling process
of the position DDPM, and the detailed algorithm is shown in Algorithm 1. We
set the guidance scale s to 1 in our experiments. The overall idea of the algorithm
is to guide the first N, points in the Ny, generated points and encourage them

GetMesh: High-quality Mesh Generation and Manipulation 5

v hT he ke

3DILG GET3D SLIDE 3DShape2VecSet
MeshDiffusion SDF-StyleGAN NFD

Fig. 16: Pyrender-rendered images of meshes generated by baseline methods.

to be close to the human-edited latent points. The rest points in the Npax
generated points can fill the holes or missing parts by leveraging the generative
prior in the position DDPM.

C Evaluation Details

Shading-FID. We follow [48] to calculate Shading-FID between rendered im-
ages of the generated meshes and meshes in the dataset. When generating meshes
using our method, we do not use classifier-free guidance for the class condition.
We use the released checkpoints of the baselines to generate meshes for eval-
uation. Since the baselines use different portions of the dataset for training?,
we use all data in a category including the training, validation, and test sets to
render images as the reference set. We generate the same number of meshes as
the reference set for evaluation. We follow the same procedures in [48] to ren-
der multi-view images of the generated meshes and meshes in the reference set,
except that we render 512 x 512 images instead of 299 x 299 images to better
capture details of the generated meshes and meshes in the reference set.

[48] uses Pyrender to render images by default, but we find that Pyrender-
rendered images of the meshes generated by our method often bear obvious ar-
tifacts: There are many small dots on the mesh surfaces as shown in Figure 15.
We validate that this is a problem caused by Pyrender by rendering the same
meshes using MeshLab. We can see that images rendered by MeshLab do not
bear any artifacts. Therefore, it is not because meshes generated by our method
have any flaws. We hypothesize that this is because meshes generated by our
method have too dense faces on their surfaces due to the face subdivision op-
eration in the mesh autoencoder, and the vertex deformation operation in the
refinement module could also result in extremely small faces. Pyrender can not
render meshes with dense and small faces properly. We use Open3D to reduce
the number of faces of the generated meshes to 50000, and use Pyrender to ren-
der the simplified mesh again. The result is shown in Figure 15. Indeed, we can

4 They all use 70% or more data for training. Therefore, the comparison with our
method, which uses 70% data for training, is fair.

6 Z. Lyu et al.

Table 7: Architecture of the point-based encoders and upsampling modules in the
mesh autoencoders.

Input Points Level 1 Level 2 Level 3 Level 4 Latent Points Upsampled Points

Number of Points 16384 4096 1024 256 64 32-64 256

Feature Dimension 3 128 256 512 512 768 384

Number of Points 16384 4096 1024 256 - 128-256 1024
Feature Dimension 3 128 256 512 - 192 192

Number of Points 16384 4096 1024 - - 512-1024 4096
Feature Dimension 3 128 256 - - 48 128

Number of Points 16384 8192 4096 - - 2048-4096 16384
Feature Dimension 3 128 256 - - 12 3

Table 8: Reconstruction performance of the 4 mesh autoencoders. Nmin and Nmax
are the minimum and maximum number of latent points in the latent space. D is the
dimension of the features of the latent points.

Nimin Nmax| D CD x107? | Mask-ToU

32 64 |768 1.55 0.954
128 256 (192 1.34 0.968
512 102448 1.07 0.971
2048 4096 | 12 1.19 0.968

see that the artifacts are mitigated by reducing the number of faces. Therefore,
we simplify our meshes to 50000 faces before calculating Shading-FID.

We also observe Pyrender-rendered images of meshes generated by baseline
methods and find that they do not have this problem since their meshes typically
have much fewer faces than our method, and they use either Marching Cube or
DMTet to extract meshes, where extremely small faces are rare. The render
result is shown in Figure 16. Therefore, the comparison between our method
and baselines is fair.

1-NNA, MMD, Coverage. We follow [42] to compute 1-NNA, MMD, and
Coverage between generated meshes and meshes in the dataset. For each cate-
gory, we randomly sample 1000 meshes from the whole category as the reference
set, and generate 1000 meshes for our method and baselines. We sample 2048

points from the mesh surfaces and normalize them to the bounding box [—1,1]3
to compute 1-NNA, MMD, and Coverage.

Meshes in the ShapeNet dataset are non-watertight and have inner struc-
tures in general. To sample points only from the mesh outer surface, we render
multi-view depth maps for a mesh (100 random views), project each depth map
to a point cloud using camera extrinsics and intrinsics, and concatenate them to-
gether to form a complete point cloud. To obtain a uniform point cloud, we first
randomly downsample the concatenated point cloud to 16384 points and then
downsample it to 2048 points using FPS. We use the same method to sample
2048 points from the generated meshes.

GetMesh: High-quality Mesh Generation and Manipulation 7

Table 9: The amount of computational resources (A100 GPUs) and time to train the
position DDPMs and feature DDPMs. Note that the training time could be affected by
many factors such as data I/O speed, GPU utilization, or node differences in a cluster.

N N Position DDPM | Feature DDPM
ST Number of GPUs Days|Number of GPUs Days
32 64 2 2 4 5
128 256 4 2 16 3

512 1024 8 3 16 4

2048 4096 32 8 32 12

Table 10: Ablation study of the number of latent points in the latent space. 1-NNA
is reported.

New N 1-NNA (CD) | | 1-NNA (EMD) |}
i mTme | Airplane Car - Chair Table|Airplane Car Chair Table

32 64 | 95.15 83.45 80.53 79.63| 94.90 90.00 83.68 85.19
128 256 | 70.70 85.35 53.00 53.90| 68.80 82.50 52.85 54.35
512 1024 | 76.30 86.60 74.72 75.53| T74.85 84.60 76.03 75.23
2048 4096| 99.90 99.75 99.30 99.05| 99.90 99.70 99.34 98.59

D Ablation Study

We conduct an ablation study on the number of latent points in the latent
space. We train 4 mesh autoencoders with different numbers of latent points
Niins Nmax, and feature dimension D. We keep Ny X D fixed to ensure that
the number of bits of the latent representation does not change. The architecture
of the encoders and upsampling details are shown in Table 7. The architecture of
decoders is the same as the one described in Section A.1. The mesh autoencoder
with NV € [128,256] is trained for scratch as described in Section A.1. The other
3 autoencoders are initialized by using parameters from the same modules in
the autoencoder with N € [128,256], and parameters that do not exist in the
autoencoder with N € [128,256] are randomly initialized. The 3 autoencoders

Table 11: Ablation study of the number of latent points in the latent space. MMD is
reported.

Neo N MMD (CD) x1000 | | MMD (EMD) x100 |
mmomeE Airplane Car Chair Table [Airplane Car Chair Table

32 64 6.52 5.70 17.84 21.39| 11.99 9.76 18.49 18.70
128 256 | 3.50 3.99 14.8 18.53| 8.31 7.93 15.73 15.45
512 1024| 3.75 4.46 17.83 23.53| 8.75 826 17.83 17.99
2048 4096 | 44.47 35.83 150.23 162.67| 30.31 23.69 53.29 54.85

8 Z. Lyu et al.

Table 12: Ablation study of the number of latent points in the latent space. Coverage
is reported.

Noo N | COV (CD) (Percent) + | COV (EMD) (Percent) *
w2 Tmex| Airplane Car Chair Table|Airplane Car Chair Table

32 64 32.0 25.35 43.79 44.29| 33.9 25.95 43.39 42.39
128 256 | 47.6 28.6 49.45 50.65| 49.0 31.1 48.95 48.55
512 1024| 39.8 24.7 29.33 30.43| 41.4 26.0 28.43 27.83
2048 4096| 2.4 14 28 34 2.4 1.8 26 3.0

Table 13: Average generation time (in seconds) per sample of our models tested on
a single NVIDIA A100 GPU. The samples are generated in 1000 steps without any
accelerations. Note that we have included the time to reconstruct meshes from latent
points with features to feature DDPM’s generation time.

Nmin Nmax Position DDPM Feature DDPM Total

32 64 0.12 0.22 0.34
128 256 0.54 0.63 1.17
512 1024 4.03 4.11 8.14
2048 4096 45.21 46.97 92.18

(N € [32,64], N € [512,1024], N € [2048,4096]) are trained with learning rates
5x 107%,2 x 1074,2 x 10™%, respectively. They all use batchsize 128 and are
trained until convergence: 400 epochs for N € [32,64], N € [512,1024], and
500 epochs for N € [2048,4096]. The reconstruction performance of the 4 mesh
autoencoders is shown in Table 8. We can see that all mesh autoencoders achieve
relatively good reconstruction performance, and the mesh autoencoder with N €
[512,1024] achieves the best reconstruction performance.

Next, we train latent diffusion models in the latent space of these autoen-
coders. The DDPMs all use the same Transformer architecture described in Sec-
tion A.2. The amount of computational resources and time to train the DDPMs
are shown in Table 9. We use Shading-FID, 1INN-A, MMD, and Coverage to
evaluate their generation performance. Shading-FID is shown in Table 5 in the
main text, INN-A, MMD, and Coverage are shown in Table 10, Table 11, and
Table 12, respectively. We can see that the diffusion model with N € [128, 256]
achieves the best generation performance in most cases.

We also test the generation time of these latent diffusion models and the
result is shown in Table 13. We can see that fewer latent points lead to faster
generation. The model with N € [128,256] achieves a good trade-off between
generation quality and speed.

GetMesh: High-quality Mesh Generation and Manipulation 9

,,,,,, : 5 v 3

. o i By e
st Rl e

- e

e
)

SR it
e e
Lt Lt

Fig. 17: Use positions of the latent points to control the generated shapes.

E Controllable Shape Generation

In Section 5.6 in the main text, we demonstrate the controllable generation
ability of our method using the model with N € [512,1024]. In this section,
we use our model with N € [128,256] to demonstrate controllable generation.
Several examples are shown in Figure 17. An example of shape interpolation is
shown in Figure 18. Examples of shape combination are shown in Figure 19.

10 Z. Lyu et al.

Fig. 18: An example of shape interpolation. The left-most is the source shape and the
right-most is the target shape.

Fig. 19: Examples of shape combination.

GetMesh: High-quality Mesh Generation and Manipulation 11

F More Qualitative Results

We generate materials for meshes in Figure 1 using [41] and result is shown in
Figure 20. We also qualitatively compare meshes generated by our method and
baselines. Results are shown in Figure 21, Figure 22, Figure 23 Figure 24.

' gl H
N K

=N Hu%’ el
Bt o &

Fig. 20: Meshes generated by our method. Materials of the meshes are generated by an
off-the-shelf material generator [41]. Note that texture or material generation is NOT
the focus or contribution of this work. We merely intend to show that our method can
be seamlessly combined with off-the-shelf methods to obtain meshes with textures or
materials.

12 Z. Lyu et al.

3DILG

3DShape2VecSet

NFD

SDF-StyleGAN

SLIDE

QOurs

Fig. 21: Compare airplanes generated by our method and baselines. Notably, GetMesh
better handles thin structures and fine details such as wings and engines than baselines.

GetMesh: High-quality Mesh Generation and Manipulation 13

3DILG

3DShape2VecSet

SLIDE

GET3D

MeshDiffusion

SDF-StyleGAN

NFD

Ours

Fig. 22: Compare cars generated by our method and baselines. GetMesh generates
meshes with smoother surfaces and sharper edges.

14 Z. Lyu et al.

3DILG

3DShape2VecSet

GET3D

NFD

SDF-StyleGAN

SLIDE

Ours

Fig. 23: Compare chairs generated by our method and baselines. GetMesh generates
meshes with smoother surfaces and sharper edges.

GetMesh: High-quality Mesh Generation and Manipulation 15

3DILG

3DShape2VecSet

MeshDiffusion

GET3D

SDF-StyleGAN

Qurs

Fig. 24: Compare tables generated by our method and baselines. GetMesh generates
meshes with smoother surfaces and sharper edges.

